"Like Sheep Among Wolves": Characterizing Hateful Users on Twitter

نویسندگان

  • Manoel Horta Ribeiro
  • Pedro H. Calais
  • Yuri A. Santos
  • Virgílio A. F. Almeida
  • Wagner Meira
چکیده

Hateful speech in Online Social Networks (OSNs) is a key challenge for companies and governments, as it impacts users and advertisers, and as several countries have strict legislation against the practice. This has motivated work on detecting and characterizing the phenomenon in tweets, social media posts and comments. However, these approaches face several shortcomings due to the noisiness of OSN data, the sparsity of the phenomenon, and the subjectivity of the definition of hate speech. This works presents a user-centric view of hate speech, paving the way for better detection methods and understanding. We collect a Twitter dataset of 100, 386 users along with up to 200 tweets from their timelines with a randomwalk-based crawler on the retweet graph, and select a subsample of 4, 972 to be manually annotated as hateful or not through crowdsourcing. We examine the difference between user activity patterns, the content disseminated between hateful and normal users, and network centrality measurements in the sampled graph. Our results show that hateful users have more recent account creation dates, andmore statuses, and followees per day. Additionally, they favorite more tweets, tweet in shorter intervals and are more central in the retweet network, contradicting the “lone wolf” stereotype often associated with such behavior. Hateful users are more negative, more profane, and use less words associated with topics such as hate, terrorism, violence and anger. We also identify similarities between hateful/normal users and their 1-neighborhood, suggesting strong homophily.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing and Detecting Hateful Users on Twitter

Most current approaches to characterize and detect hate speech focus on content posted in Online Social Networks. They face shortcomings to collect and annotate hateful speech due to the incompleteness and noisiness of OSN text and the subjectivity of hate speech. These limitations are often aided with constraints that oversimplify the problem, such as considering only tweets containing hate-re...

متن کامل

Sheep and Wolves—Testbed for Interaction and Collaboration between Humans and Robots

This paper presents the first prototype of Sheep and Wolves, a system for testing interaction and collaboration paradigms between humans and robots. The paper contributions are twofold: a mixed reality interface for human-robot interaction, and a practical experimental tool for assessing how different robotic behavioral patterns affect interaction and collaboration with users. Sheep and Wolves ...

متن کامل

Characterizing Microblogs with Topic Models

As microblogging grows in popularity, services like Twitter are coming to support information gathering needs above and beyond their traditional roles as social networks. But most users’ interaction with Twitter is still primarily focused on their social graphs, forcing the often inappropriate conflation of “people I follow” with “stuff I want to read.” We characterize some information needs th...

متن کامل

A High-Performance Model based on Ensembles for Twitter Sentiment Classification

Background and Objectives: Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment ta...

متن کامل

Online Human-Bot Interactions: Detection, Estimation, and Characterization

Increasing evidence suggests that a growing amount of social media content is generated by autonomous entities known as social bots. In this work we present a framework to detect such entities on Twitter. We leverage more than a thousand features extracted from public data and meta-data about users: friends, tweet content and sentiment, network patterns, and activity time series. We benchmark t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1801.00317  شماره 

صفحات  -

تاریخ انتشار 2017